Table IV. Ratio of Dimeric to Monomeric Product from p-Diisopropylbenzene after $X \mathrm{~h}$ at Room Temperature and $Y \mathrm{~h}$ at Reflux

$X, \mathrm{~h}$	$Y, \mathrm{~h}$	dimer:monomer
12	3	$35: 65$
24	3	$50: 50$
24	24	$80: 20$

The number of deuterium atoms and positions of substitution were confirmed by mass spectrometry and NMR. Dry nitrogen atmosphere was used for all reactions. The n-butyllithium and potassium tert-alkoxide solutions were approximately 1.6 M . For the preparation of potassium tert-pentoxide solution and $1: 1 \mathrm{Bu} / \mathrm{LiKO} t \mathrm{Pe}$, see ref 4.

Metalation-Elimination Reactions. The starting material (Table 1) was added slowly by syringe to a stirred 4 -fold excess of $\mathrm{BuLi} / \mathrm{KO}-t$ - Pe . The mixture was stirred for 24 h at room temperature. During this time the intense color of the metalated olefins and, in the case of radical anions, a metallic mirror developed. The reaction was then slowly heated and refluxed for 24 h . After cooling to room temperature, the reaction mixture was quenched by pouring slowly under nitrogen into a large excess of cooled $\mathrm{D}_{2} \mathrm{O}$. Care was taken not to allow any color to develop. The organic layer was separated, washed twice with water, and dried over calcium chloride. After the hexane was distilled, the products were separated by preparative GLC with a $3 / 8$ in $\times 20 \mathrm{ft} 30 \%$ SE- 30 on Chromasorb-W-column or HPLC with Zorbax ODS and light petroleum as solvent.

The ratio of dimeric to monomeric products depends on both the reaction time at room temperature and the time at reflux. Examples are shown in Table IV.

ESR Sample Preparation. The heterogenous reaction mixture (0.1 mL) was transferred by syringe to a nitrogen-flushed ESR-tube. After cooling to $-78^{\circ} \mathrm{C}, 0.1-0.2 \mathrm{~mL}$ of THF was added and the whole mixed by a slow current of nitrogen passing through the mixture for a short time. The tube was then sealed.

2,5-Bis-(p-isopropylphenyl)hexane and 2,5-bis(m-isopropylphenyl)hexane were obtained as a mixture of SS, RR, and meso enantiomers.

2,5-Bis(p-isopropylphenyl)hexane: $\mathrm{mp} 53-55^{\circ} \mathrm{C},{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta$ $1.15\left(\mathrm{~d},{ }^{3} J=6 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.25\left(\mathrm{~d},{ }^{3} J=6 \mathrm{~Hz}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right)$, 1.35-l. $45\left(\mathrm{~m},{ }^{3} \mathrm{~J}=4 \mathrm{~Hz}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.2-3.1(2 \mathrm{~m}$ overlapping, 4 H ,

4 CH), 7.0 (s, 8 H , ar); IR (liquid fil) 3050, 3030, 3010, 2985, 2970, 2940 (CH) cm^{-1}; MS (96 eV), m/e 322 (100%), 307 (5\%), 279 (25\%); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 22.3,22.5\left(2 \mathrm{q}, \mathrm{CH}_{3}\right), 24.1\left(\mathrm{q}, \mathrm{CH}_{3}\right), 33.6(\mathrm{~d}, \mathrm{CH})$, 36.2, $26.6\left(2 \mathrm{t}, \mathrm{CH}_{2}\right), 39.6$ (d, CH), 126.1, 126.7 ($2 \mathrm{~d}, \mathrm{C}$-ortho, C-ortho'), 144.8, 144.9 ($2 \mathrm{~s}, \mathrm{C}$-ipso), 145.9 (s, C-ipso').

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{34}$ (322.5): C, 89.4; H 10.6. Found: C, 89.4; H 10.3.

2,5-Bis(m-isopropylphenyl)hexane: $\mathrm{Mp} 48-50^{\circ} \mathrm{C}, \mathrm{Bp} 0.1$ torr $150-160^{\circ} \mathrm{C}$ (short path distillation), ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 1.15\left(\mathrm{~d},{ }^{3} \mathrm{~J}=\right.$ $\left.6 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.25\left(\mathrm{~d},{ }^{3} J=6 \mathrm{~Hz}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 1.35-1.55\left(\mathrm{~m},{ }^{3} J=\right.$ $4 \mathrm{~Hz}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}$), 2.3-3.2 (2 m overlapping, $4 \mathrm{H}, 4 \mathrm{CH}$), $6.8-7.35(\mathrm{~m}, 8 \mathrm{H}$, ar); IR (liquid film) $3010,2970,2955,2930(\mathrm{CH}) \mathrm{cm}^{-1}$; MS (96 eV) $\mathrm{m} / \mathrm{e}=322(40 \%), 320(15 \%), 147(100 \%)$.

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{34}$ (322.5): C, 89.4; H 10.6. Found: C, 89.0; H, 10.8 .

Acknowledgment. This work was supported by the Deutsche Forschungsgemeinschaft, the SERC, and the Fonds der Chemischen Industrie. ESR experiments were performed during a visit to UCL financed by the British Council. We thank G. W. Spitznagel for computational assistance and the staff of the Regionales Rechenzentrum Erlangen for their cooperation.

Registry No. 18, 88158-19-4; 19, 88158-20-7; 20, 88158-21-8; 21, 88158-22-9; 24, 88158-23-0; 25, 88158-24-1; 26, 88158-25-2; 27, 27271-53-0; 28, 52340-00-8; 29, 63949-25-7; 30, 88158-26-3; 31, 88158-27-4; 32, 88158-28-5; (R^{*}, R^{*})-2,5-bis(p-isopropylphenyl) hexane, 88158-29-6; meso-2,5-bis (p-isopropylphenyl) hexane, 88158-30-9; (R^{*},R^{*})-2,5-bis(m-isopropylphenyl)hexane, 88158-31-0; meso-2,5-bis (m isopropylphenyl)hexane, 88158-32-1; stilbene radical anion, 34467-73-7; o-xylene, $95-47-6 ; m$-xylene, 108-38-3; p-xylene, 106-42-3; ethylbenzene, 100-41-4; m-ethylmethylbenzene, 620-14-4; p-ethylmethylbenzene, 622-96-8; m-diethylbenzene, 141-93-5; p-diethylbenzene, $105-05-5$; isopropylbenzene, $98-82-8$; m-isopropyltoluene, 535-77-3; p-isopropyltoluene, 99-87-6; m-diisopropylbenzene, 99-62-7; p-diisopropylbenzene, 100-18-5; BuLi, 109-72-8; KOtPe, 53535-81-2.

Supplementary Material Available: Summaries of MNDO calculations (z-matrices) for 18-32 (15 pages). Ordering information is given on any current masthead page.

Conformational Analysis. 45. ${ }^{1}$ Syn-Axial Methyl/Phenyl and Gauche Methyl/Methyl Interactions ${ }^{\dagger}$

Muthiah Manoharan and Ernest L. Eliel*
Contribution from the W. R. Kenan, Jr., Laboratories, Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27514. Received April 18, 1983.
Revised Manuscript Received September 13, 1983

Abstract

Examination of the conformational equilibria of 1-phenyl-3,3,t-5-trimethylcyclohexane and 1-phenyl-1,3,3-trimethylcyclohexane by low-temperature ${ }^{13} \mathrm{C}$ NMR spectroscopy indicates the 1,3 -diaxial interaction of phenyl and methyl to amount to $3.4 \pm 0.1 \mathrm{kcal} / \mathrm{mol}$. The gauche interaction of the methyl substituents in trans-1,2-dimethylcyclohexane is measured as $0.74 \mathrm{kcal} / \mathrm{mol}$ through determination, by the same technique, of the conformational equilibrium of $r-1$-phenyl- $t-3, c-4$ dimethylcyclohexane.

The Phenyl/Methyl Syn-Axial Interaction

In the determination of predominant conformations of complex molecules with six-membered rings, 1,3-diaxial (or syn-axial) interactions play an important role. Among 18 such interactions recently tabulated ${ }^{2}$ is the phenyl/methyl interaction, assigned a value of $2.9 \mathrm{kcal} / \mathrm{mol}$. This value is derived from a determination of the excess of a methyl/methyl/H interaction over a phenyl/ methyl/H interaction (cf. Scheme I) by NMR spectroscopy of

[^0]Scheme 1

α-fluoro-3-phenyl-3,5,5-trimethylcyclohexanones, ${ }^{3}$ which yields a difference of $0.9 \mathrm{kcal} / \mathrm{mol}$. Taking the value of the methyl/

Scheme II

C
Scheme III

E

G

0
$\Delta G^{0}{ }^{\mathrm{kcal} / \mathrm{mol}}$
Caled. $=0.90$
Expt1. $=0.32$

Scheme IV

Scheme V

Scheme VI

4
determined by Geneste et al. ${ }^{10}$ through pK measurements. ${ }^{11}$ If one assumes that the conformational energy levels of E and G are equal, the conformational energy of F is $1.05 \mathrm{kcal} / \mathrm{mol}(1.75$ -0.7) above that of H. Since geminal interactions in F and H are the same and cancel out, one can compute the conformational energy difference between F and H as follows: $(\mathrm{Ph} / \mathrm{H}+\mathrm{Me} / \mathrm{H}$ $+\mathrm{Ph} / \mathrm{Me})-(2 \mathrm{Ph} / \mathrm{H}+2 \mathrm{Me} / \mathrm{H})=1.05$, or $\mathrm{Ph} / \mathrm{Me}=1.05+$ $\mathrm{Ph} / \mathrm{H}+\mathrm{Me} / \mathrm{H}=1.05+1.43+0.87=3.35 \mathrm{kcal} / \mathrm{mol}$, a value somewhat larger than that tabulated. ${ }^{2}$ In the light of these discrepancies, we felt that a redetermination of the phenyl/methyl syn-axial interaction was in order.

Results and Discussion

In this work the $\mathrm{Ph} / \mathrm{Me}$ interaction was determined by measuring the position of the equilibrium shown in Scheme IV by low-temperature ${ }^{13} \mathrm{C}$ NMR spectroscopy. A mixture of compound 1 (Scheme IV) and its stereoisomer 2 was easily obtained from dihydroisophorone in three steps as shown in Scheme V: diastereomers $\mathbf{1}$ and $\mathbf{2}$ were separated by preparative gas chromatography. The salient NMR data at room temperature and, in the case of 1 , at $-100^{\circ} \mathrm{C}$ (in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) are shown in Table I (top). Both conformers of $\mathbf{1}$ were easily seen and, as shown in Table II, are in a ratio of 2.45 ± 0.22 whence $\Delta G^{\circ}=-0.31 \pm$ $0.03 \mathrm{kcal} / \mathrm{mol}$. If X is the $\mathrm{Ph} / \mathrm{Me}$ syn-axial interaction, the conformational energy of I (Scheme IV) is $X+1.43+0.87$ or $2.30+X \mathrm{kcal} / \mathrm{mol}$ and that of J $3.7+1.74$ or $5.44 \mathrm{kcal} / \mathrm{mol}$. Hence $2.30+X-5.44=0.31$ whence $X=3.45 \mathrm{kcal} / \mathrm{mol}$. This value is only slightly higher than that derived from the data of Geneste et al. ${ }^{10}$ but appreciably higher than that tabulated ${ }^{2,3}$ and very much higher than that computed by force-field calculation. ${ }^{6}$ It is only slightly smaller than the syn-axial methyl/methyl interaction ($3.7 \mathrm{kcal} / \mathrm{mol}^{4}$), suggesting that, although the phenyl ring turns its flat face toward the inside of the cyclohexane chair (see below), the interaction between that face and the axial methyl group across the chair is large.
One may now recalculate the equilibrium shown in Scheme I as $-1.13 \mathrm{kcal} / \mathrm{mol}$, using experimental instead of calculated values for the $\mathrm{Ph} / \mathrm{Me} 1,3$ and geminal interactions. ${ }^{12}$ This value differs

[^1]Table I．${ }^{13} \mathrm{C}$ NMR Spectra of Tetrasubstituted Cyclohexanes and Derivatives

compd		C－1	C－2	C． 3	C－4	C－5	C．6	$\mathrm{Me}-3 \mathrm{e}$	$\mathrm{Me}-3 \mathrm{a}$	Me－5	ipso	ortho	meta	para
2 （cis）	RT，${ }^{\boldsymbol{a}} \mathrm{CDCl}_{3}$	40.15	$47.2{ }_{8}$	30.68	48．3，	$28.7{ }_{5}$	$43.0{ }_{6}$	$33.4{ }_{8}$	$25.4{ }_{4}$	$22.8{ }_{3}$	$147.6{ }_{2}$	$126.9{ }_{2}$	$128.3{ }_{2}$	125.8
2	calcd ${ }^{\text {b }}$	$40.2{ }_{5}$	$47.0{ }^{6}$	$30.8{ }_{0}$	$48.5{ }^{\circ}$	28.3 ，	$43.2{ }_{5}$	$33.7{ }^{\text {\％}}$	$24.9{ }^{4}$	$23.1{ }_{5}$	$147.9{ }_{7}$	$126.8{ }_{3}$	$128.3{ }_{2}$	125.8
1 （trans）	$\mathrm{RT}, \mathrm{CDCl}_{3}$	35.54	$46.3{ }_{4}$	31.42	$45.7{ }^{\circ}$	27．1．	38.8 5	$32.4{ }^{\circ}$	30.17	21.92	147.4	$127.0{ }_{4}$	128.2 ¢	$125.5{ }^{\text {c }}$
1	RT， $\mathrm{CD}_{2} \mathrm{Cl}_{2}$	$35.8{ }_{2}$	$46.6{ }_{1}$	31.66	45.8 s	27．5，	39.15	$32.6{ }^{\text {o }}$	30.2 。	$21.9{ }^{\text {g }}$	147.97	$127.3{ }_{8}$	$128.5{ }_{2}$	$125.8{ }^{6}$
1	calcd ${ }^{c}{ }^{\circ}$	$33.9{ }_{0}$	45.7 \％	$31.2{ }_{0}$	45．4，	26.5 ，	$37.9{ }_{6}$	32.5 s	$31.8{ }^{\text {s }}$	$22.0{ }_{2}$	－147．5 ${ }_{2}$	$127.2{ }^{\text {s }}$	128.42	125.68
11	$-100{ }^{\circ} \mathrm{C}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$	$31.8{ }_{8}$	$43.5{ }_{2}$	$(35.65)^{d}$	48.28	23.90	$\left(35.5{ }_{6}\right)^{\text {d }}$ d	$34.1{ }_{1}$	$26.7{ }_{4}$	$23.3{ }^{3}$	146.27	$127.0{ }_{5}$	128.13	124.94
11	calcd ${ }^{\text {b }}$	$30.8{ }_{5}$	42.5 s	$31.7{ }^{\text {a }}$ g	$49.0{ }_{0}$	22.9 o	$38.6{ }_{0}{ }^{\text {g }}$	$34.5{ }^{\text {e }}$	$27.6{ }^{\text {e }}$	23.7	f	f	f	f
1 J	$-100{ }^{\circ} \mathrm{C}, \mathrm{Cl}_{2} \mathrm{Cl}_{2}$	35.0 ，	$47.0{ }^{5}$	$\left(28.5{ }_{8}{ }^{\text {g }}\right.$ d	$43.7{ }_{2}$	$\left(28.1{ }_{7}{ }^{\text {J }}\right.$ d	39.3 g	$31.6{ }_{3}$	34.8 s	21.26	$148.2{ }_{5}$	127．37	128．5，	126.1_{1}
1 J	calcd ${ }^{\text {b }}$	$34.5{ }^{\circ}$	$47.5{ }^{\circ}$	$31.7{ }^{\circ} \mathrm{g}$	$43.9{ }^{\circ}$	28.9	$43.0{ }^{\text {g }}$	$33.7{ }^{\text {\％}}$	$33.5{ }_{0}$	$21.5{ }_{0}$	$148.5{ }_{4}$	127．1，	$128.6{ }_{3}$	126.60
1	RT， $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}$	$35.8{ }_{5}$	$46.4{ }_{\text {a }}$	31.48	45.8 ，	27.30	$38.9{ }_{2}$	30.36	32.3 ，	$22.0{ }_{6}$	147.4_{8}	127．3 ${ }^{2}$	$128.5{ }_{2}$	$125.8{ }_{6}$
1	$+100{ }^{\circ} \mathrm{C}, \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CO}_{3}$	36.27	$46.6{ }_{7}$	$31.5{ }_{4}$	$46.2{ }_{3}$	$27.4{ }_{8}$	$39.4{ }_{3}$	$30.4{ }_{4}$	$32.4{ }_{8}$	22.0 S	$148.0{ }_{0}$	$127.4{ }_{1}$	128．6 ${ }_{1}$	$125.9{ }^{\text {s }}$
1	$-50^{\circ} \mathrm{C}, \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}$	35．4，	45.9 \％	31.51	45．5，	27.01	38．1，	$30.4{ }_{\text {s }}$ i	$32.1{ }_{8}{ }_{i}$	$22.1{ }_{3}$	147.12	$127.3{ }_{2}$	$128.5{ }_{0}$	125.8
3	RT， CDCl_{3}	210.93	$51.2{ }^{\circ}$	42.5 s	$51.5{ }_{6}$	35.94	$54.4{ }_{1}$	$32.9{ }^{\text {i }}{ }_{i}$	$28.4{ }^{\text {i }}{ }_{i}$	$34.8{ }^{8}{ }^{h} h$	$147.8{ }^{8}$	$125.8{ }_{6}$	$128.2{ }^{\circ}$	$125.9{ }^{5}$
3 3	RT， $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}$	$208.5{ }^{\circ}$	51.08	$42.3{ }_{4}$	$51.4{ }_{2}$	$35.7{ }^{\circ}$	$54.1{ }^{7}$	$32.88_{8}^{i}{ }_{i}$	$28.3{ }_{6}{ }_{i}$	$34.8{ }_{2}{ }^{h} h$	148.25	$126.1_{2}{ }^{\text {j }}$	$128.3{ }^{7}{ }^{7}$	126．0 ${ }^{125.1}$
3	$-80{ }^{\circ} \mathrm{C}, \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}$	210．0，	50.4 \％	$42.2{ }_{4}$	50.4 \％	36.00	$53.7{ }_{5}$	$33.1{ }_{5}{ }^{\text {i }}$	$27.3{ }^{\text {i }}$	$35.3{ }_{9}{ }^{h}$	147.70	${ }_{128.0}{ }_{1}{ }^{j}{ }^{j}{ }^{\text {j }}$	$\begin{aligned} & 128.8_{3}{ }^{j}{ }_{j} \\ & 128.0_{1}{ }^{j} \end{aligned}$	125.14
3	$+100{ }^{\circ} \mathrm{C}, \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}$	$208.0{ }_{2}$	$51.4{ }_{2}$	$42.3{ }_{4}$	$51.8{ }_{6}$	35.47	$54.3{ }_{2}$	32．6，${ }^{i}{ }^{\text {d }}$	$29.26{ }^{\text {i }}$	$34.3{ }_{6}{ }^{\text {d }}$	$148.8{ }_{8}$	126．1．	$128.5{ }^{\circ}$	126．1，
4	RT， $\mathrm{CDCl}_{3}{ }^{\circ}$	$37.8{ }_{2}$	$51.5{ }_{\text {a }}$	31.46	$39.9{ }_{4}$	$19.7{ }_{8}$	$36.5{ }_{4}$	$\left(33.1{ }_{0}{ }^{\text {a }}{ }^{\text {d }}\right.$	27.93	$\left(35.5{ }^{6}\right)^{d . k}$	$149.5{ }^{8}$	$125.8{ }_{4}$	127.9 ，	125.07
4	$\mathrm{RT}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$	$38.0{ }^{3}$	$51.6{ }_{2}$	$31.6{ }^{6}$	$40.1{ }_{4}$	$20.0{ }_{5}$	$36.7{ }^{3}$	$(33.27)^{\text {d }}{ }^{\text {d }}$	27．8，	${ }_{(35.7}{ }^{\text {g }}{ }^{\text {d，k }}{ }^{\text {d，k }}$	$149.7{ }_{7}$	$126.1_{3}{ }_{j}$	$128.2_{2}{ }_{j}$	125.27
4 B	$-100{ }^{\circ} \mathrm{C}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$	$37.5{ }^{3}$	50.78	31.58	39．3，	19.5 \％	35.76	$(34.2 \mathrm{~g})^{\text {d }}$	$25.9{ }_{7}$	$(35.76)^{\text {d，k }}$	$148.3{ }_{8}$	$127.6{ }_{1}{ }^{\mathrm{j}}$ $125.1{ }_{1}{ }^{\text {g }}$	$\begin{aligned} & 128.1^{2}{ }_{9}{ }_{j} \\ & 128.0_{7}{ }^{2} \end{aligned}$	124．6 ${ }_{6}$
4 A	$-100{ }^{\circ} \mathrm{C}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$	$38.8{ }_{0}$	49.60	l	l	l	l	$\left(27.4_{0}\right)^{d}$	1	$\left(27.8_{0}\right)^{d, k}$	I	1	l	
4	RT， $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}$	37.81	51．5，	$31.5{ }_{4}$	$40.1{ }_{6}$	$20.1{ }_{5}$	$36.7{ }_{0}$	${ }^{(33.36)}{ }^{\text {d }}$ d ${ }^{\text {d }}$	$27.9{ }^{0}$	$\left(35.8{ }_{2}\right)^{\text {d．k }}$	$149.2{ }_{8}$	125.92	128．2，	$125.3{ }_{2}$
4	$+100^{\circ} \mathrm{C}, \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}$	38.24	$52.0{ }_{1}$	31.6	40．4，	20．2，	37.1_{8}	$(32.9)^{\text {d }}$ d	28.75	$(35.12)^{\text {d．k }}$	150.13	$126.0{ }_{2}$	$128.3{ }_{3}$	$125.4{ }_{5}$

 （geminal）in this compound．${ }^{j}$ Peaks in 1：1 ratio．${ }^{k} \mathrm{Me}-1$ in this compound．${ }^{\text {Peak not located．}}$

Table II．Conformer Ratio J／l（Scheme 1V）${ }^{a}$
Table IV．${ }^{13} \mathrm{C}$ NMR Shifts of Phenylcyclohexan－r－1－ols and Related Compounds（A）${ }^{a}$

	relative arcas		
carbon	J	1	K
$\mathrm{C}-2$	300	110	2.73
$C-4$	250	100	2.50
$\mathrm{C}-5$	320	135	2.37
Me－3a	260	120	2.17
Me－5	350	150	2.33
C－meta	320	140	2.29
C－para	110	40	2.75
			av 2.45 ± 0.22^{a}

${ }^{a}-\Delta G^{o}=0.31 \pm 0.03 \mathrm{kcal} / \mathrm{mol}$ ．
Table III．Conformer Ratio B／A（Scheme I）${ }^{\alpha}$

compd	substituent	R	C－1	C－2	C． 3	C－4	C－5	C 6	$3-\mathrm{Me}$	4－Me	5－Me	ipso	ortho	meta	para	other
14	none	Ph	73.27	39.23	22.5	25．8，	22.56	39.23				150.18	$124.8{ }_{6}$	128.43	126.8	
15	$c-4-t-\mathrm{Bu}{ }^{\text {b }}$	Ph	72.73	39．3，	$22.8{ }_{9}$	$47.5{ }_{3}$	22.8 ，	39．3，	$27.6{ }^{\text {c }}{ }^{c}$			149.58	$124.4{ }_{9}{ }^{\text {d }}$ d	$128.1{ }^{3}$	$126.6{ }^{5}$	
16	$t-4-t-13 u^{b}$	Ph	73.22	$38.7{ }_{4}$	$24.9{ }^{2}$	$47.6{ }_{8}$	24.92	$38.7{ }^{4}$	$27.5{ }^{\text {c }}$ c			144.20	$126.2{ }^{\text {d }}{ }^{\text {d }}$	$128.2{ }^{2}$	126.6_{a}°	$32.1{ }^{\text {e }}$ e
11	$3.3-t-5-\mathrm{Mc}_{3}$	1＇h	75．2，	50．4，	31.72	$48.4{ }_{0}$	$24.4{ }_{5}$	$47.7{ }_{4}{ }^{\text {f }}$	$\begin{aligned} & 27.6_{0}{ }^{f} \\ & 34.6_{1} g \end{aligned}$		22.44	150．3，	124.50	$128.0{ }_{2}$	126．4，	
7	t－3，c－4－Me ${ }_{2}$	Ph	73.82	47．9。	34．26	38.48	30.98	38.7_{3}	19.8			$149.5{ }_{4}$	$124.4{ }^{\text {d }}{ }^{\text {d }}$	128.0_{5}		
8	c－3，t－4－Mc ${ }_{2}$	Ph	73.82	47.1 s	36.3 ，	$38.7{ }_{3}$	$32.7{ }^{\text {s }}$	38.38	$20.1{ }^{\text {s }}$	$19.2{ }_{8}$		$144.5{ }_{5}$	$126.3{ }_{9}{ }^{\text {d }}$	128.3	127.0	
17 18	$t-3, c-4-\mathrm{Me}_{3}$ $c-3, t-4-\mathrm{Me}^{3}$	Me Me	69.9 71.1	48.0 49.6	$34.0{ }^{6}$	$38.6{ }^{\circ}$	$30.93{ }^{3}$	38.9 40.5	19．7 ${ }^{1}$	$19.9{ }^{\circ}{ }^{\circ}$						$31.5{ }^{7}{ }^{\text {h }}$
18	$c-3, t-4-\mathrm{Me}_{3}$	Me	71.15	49.6	36.75	38.91	33．27	40.57	$20.3{ }_{2}$	19.48						25．94

${ }^{\text {C }}$ Shifts from $\mathrm{Me}_{4} \mathrm{Si}$ in $\mathrm{CDCl}_{3}-{ }^{b}$ Data taken from ref 28．${ }^{2} \mathrm{Cl}_{3}$ signal of tert－butyl group．${ }^{\text {a }}$ The large（1．7－1．9 ppm）shift difference in （ortho）resulting from the conformational interchange of Ph and OH is striking．${ }^{e} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$ signal．${ }^{f} \mathrm{ClI}_{3}$ group cis to OH ．${ }^{g} \mathrm{CH}_{3}$ group trans to OH．${ }^{h}{ }_{1-\mathrm{CH}_{3}}$ signal．

	relative areas		
carbon	B	A	K
Me－1	520	15	34.67
Mc－3e	544	15	36.27
			av 35.5 ± 1.1^{a}

Substituents Indicated

Scheme VIl

greatly from the calculated one ${ }^{6}$ of $3.3 \mathrm{kcal} / \mathrm{mol}$ and suggests that the equilibrium shown in Scheme I should be accessible experimentally by low-temperature ${ }^{13} \mathrm{C}$ NMR spectroscopy. We therefore synthesized compound 4 (Scheme I) in two steps from isophorone as shown in Scheme VI and recorded its ${ }^{13} \mathrm{C}$ spectrum at room temperature and $-100^{\circ} \mathrm{C}$ as shown in Table I (bottom). The area ratios, shown in Table III, indicate $K=35.5 \pm 1.1$ and $\Delta G^{\circ}=-1.23 \pm 0.01 \mathrm{kcal} / \mathrm{mol}$, in good agreement with the calculated value. If one now repeats the calculation made at the beginning of this paper but using experimental instead of calculated values for the equilibria shown in Schemes I and II, one obtains $X=3.36 \mathrm{kcal} / \mathrm{mol}$ for the $\mathrm{Ph} / \mathrm{Me}$ syn-axial interaction. The three values, $3.36 \mathrm{kcal} / \mathrm{mol}$ (from Scheme I), $3.45 \mathrm{kcal} / \mathrm{mol}$ (from Scheme IV), andd $3.35 \mathrm{kcal} / \mathrm{mol}$ (derived from the results of Geneste et al., ${ }^{10}$ Scheme III), are in excellent agreement, despite a number of implicit assumptions, such as additivity of conformational energies, absence of nonchair conformations, ${ }^{13}$ and negligible conformational entropy differences at least in the phencyclidine systems (Scheme III), ${ }^{14}$ and despite disregard of complications resulting from differing rotational positions of the phenyl plane. The best recommended value for the $\mathrm{Ph} / \mathrm{Me}$ syn-axial interaction is thus $3.4 \pm 0.1 \mathrm{kcal} / \mathrm{mol}$. It might be noted that the two determinations in the present work are contingent on the $\mathrm{Me} / \mathrm{Me}$ syn-axial interaction whereas the value derived from Geneste's work is independent of this interaction but rather depends on determination of conformational equilibria in phencyclidines some of which have been confirmed by ${ }^{13} \mathrm{C}$ NMR measurements. ${ }^{15}$ Thus the consistency of the data also supports the experimentally determined ${ }^{4}$ value of $3.7 \mathrm{kcal} / \mathrm{mol}$ for the $\mathrm{Me} / \mathrm{Me}$ syn-axial interaction.

The Methyl/Methyl Gauche Interaction in trans-1,2-Dimethylcyclohexane ${ }^{16}$

The vicinal $\mathrm{Me} / \mathrm{Me}$ interaction in trans-1,2-dimethylcyclohexane is one of the basic conformational parameters that enters into the equilibrium calculation of the 1,2 -dimethylcyclohexanes, a classical conformational problem. ${ }^{18}$ Previous approaches, ${ }^{16}$ based on the enthalpies of formation of the trans-1,2-, cis-1,3-, and trans-1,4-dimethylcyclohexanes ${ }^{19}$ and on conformational equilibria of t-2-amino-c-4,t-5-dimethylcyclohexanols, ${ }^{20}$ have led

[^2]Scheme Vlll

Scheme IX

M

N
to values of $1.1 \mathrm{kcal} / \mathrm{mol}^{19}$ in the vapor phase, ${ }^{21} 1.0-1.1 \mathrm{kcal} / \mathrm{mol}^{19}$ in the pure liquid, ${ }^{21}$ and $0.59-0.74 \mathrm{kcal} / \mathrm{mol}$ in various solvents. ${ }^{20,22}$ The conformational equilibrium shown in Scheme VII ($\mathrm{R}=\mathrm{H}$) should therefore correspond to a ΔG° of 0.59 to $0.74-(2 \times 1.74)$ or ca. $-2.8 \mathrm{kcal} / \mathrm{mol}$. This is too extreme to be measured directly, and we therefore used a compound (5 , Scheme VII, $\mathrm{R}=\mathrm{Ph}$) with a phenyl counterpoise (conformational energy ${ }^{7} 2.87 \mathrm{kcal} / \mathrm{mol}$) for which the predicted equilibrium corresponds to an equilibrium constant near unity. Compound 5 was synthesized as shown in Scheme VIII. The Grignard addition yielded a 70:30 mixture of epimeric alcohols 7 and 8 , which, upon dehydration, gave a mixture of position isomeric olefins 9 and 10. Catalytic hydrogenation gave 5 and its diastereomer 6 in a 55:45 ratio (as judged by ${ }^{13} \mathrm{C}$ NMR). Unfortunately the two compounds could not be separated in our hands, and the low-temperature ${ }^{13} \mathrm{C}$ NMR analysis of the conformational equilibrium of 5 was carried out with the mixture. Assignment of the signals to 6 and 5 at room temperature and to the two conformations of $5(\mathrm{~K}$ and L) at -100 ${ }^{\circ} \mathrm{C}$ has been described elsewhere; ${ }^{17}$ the equilibrium constant, obtained from the areas of the signals at $-100^{\circ} \mathrm{C}$, was $0.60 \pm$ 0.07 , corresponding to $\Delta G^{\circ}=0.13 \pm 0.03 \mathrm{kcal} / \mathrm{mol}$. To compute the $\mathrm{Me} / \mathrm{Me}$ gauche interaction from this value, it is easiest to make comparison with the equilibrium shown in Scheme IX for which $\Delta G^{\circ}=1.13 \pm 0.06 \mathrm{kcal} / \mathrm{mol}^{7} \mathrm{~K}\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}\right)$ has one more axial methyl than M ; hence, in terms of energy,

$$
\mathrm{K}=\mathrm{M}+1.74 \mathrm{kcal} / \mathrm{mol}
$$

Similarly,

$$
\mathrm{L}=\mathrm{N}+Z
$$

where Z is the desired $\mathrm{Me} / \mathrm{Me}$ gauche interaction. Subtracting:

$$
\mathrm{L}-\mathrm{K}=\mathrm{N}-\mathrm{M}+Z-1.74
$$

From Schemes VII and IX:

$$
0.13=1.13+Z-1.74
$$

whence $Z=0.74 \mathrm{kcal} / \mathrm{mol}$, the desired gauche interaction. This value is identical with the highest value determined by Tichy,

[^3]Table V．${ }^{13} \mathrm{C}$ NMR Shifts of $1-$ Phenylcyclohexenes and Related Compounds ${ }^{\alpha}$

compd	C－1	C－2	C． 3	C－4	C－5	C－6	$\mathrm{Me}-3$	Me－4	Me－5	other Me	ipso	ortho	meta	para
$19^{\text {b }}$	$136.6{ }_{7}$	$124.5{ }_{6}$	25.94	22.27	23.1 6	27.45					142.6 ，	$124.9{ }_{5}$	$128.1{ }_{5}$	126．4，
20	$136.2{ }_{8}$	$124.1{ }_{7}{ }_{7}$	$34.5{ }^{4}$	27.4 ，	31.36	$28.1{ }^{6}$		21．6。			142.46	$125.0{ }_{1}$	$128.1{ }_{6}$	127．1s
21^{c}	$125.1{ }^{\circ}$	132．1．	32．1。	45．3。	29．6。	39．2 ${ }_{0}$	21．7．		$\begin{aligned} & 25.4_{0} \\ & 29.6_{0} \end{aligned}$					
13	134．8，	129.07	31.94	$44.4{ }_{6}$	29．95	41．2 ${ }_{2}$	21．6。		$\begin{aligned} & 25.2, \\ & 28.8, \end{aligned}$		142．3，	125．0，	127．9	126.38
$22^{\text {c }}$	124．1。	137．50	33．0。	46.60	31．30	34．30	$\begin{aligned} & 25.9_{0} \\ & 29.1_{0} \end{aligned}$		22.4 。					
12	134．0	134．2，	33.28	45．7，	31．34	36.3 s	$\begin{aligned} & 26.1_{4} \\ & 29.0_{3} \end{aligned}$		22．2，		142．1，	125．07	127．92	126．38
	135.6 S	130.8 $(124.0$	38.4 34.3	35.64 35.0	31.2 34.7	$\begin{aligned} & 27.4_{3} \\ & 36.4_{0} \end{aligned}$	$20.0{ }_{9}{ }^{\text {d }}$	20．2．6 ${ }^{\text {d }}$ d ${ }^{\text {d }}$			142．4．${ }^{142.3}$	$125.1{ }_{3}$	$\begin{aligned} & 128.2 \\ & 128.1_{2} \end{aligned}$	$\begin{aligned} & 126.6_{2} \\ & 124.9 \end{aligned}$
10 23	136．14，	（124．01） 127.7 120．	34.3 37.9 0	35.09 35.8 3	34.7 31.26 	36.4 30.1 7	$20.0{ }_{6}{ }^{\text {d }}$	19．6 ${ }^{10.4}{ }^{\text {a }}{ }^{\text {d }}$						
24	$133.4{ }_{7}$	$120.7{ }_{2}$	34．6 ${ }^{\circ}$	35．0，	$34.6{ }_{1}{ }^{\circ}$	39.38			$19.4{ }^{\text {d }}$	23.5_{3}^{3}				

${ }^{a}$ Shifts from $\mathrm{Me}_{4} \mathrm{Si}$ in CDCl_{3} ．${ }^{b}$ Data from ref 7．${ }^{c}$ Data taken from Bremser catalog．${ }^{30}{ }^{d}$ These values are interchangeable．

Sicher，et al．${ }^{20}$ and close to the value of 0.85 ，which can be com－ puted from conformational energies calculated by the force－field method：${ }^{23}$ diaxial 1,2 －dimethylcyclohexane $3.90 \mathrm{kcal} / \mathrm{mol}$ ，di－ equatorial isomer $1.21 \mathrm{kcal} / \mathrm{mol}$ ，difference $2.69 \mathrm{kcal} / \mathrm{mol}$ as against $1.77 \mathrm{kcal} / \mathrm{mol}$（the value calculated for axial methyl－ cyclohexane）$\times 2$ or $3.54 \mathrm{kcal} / \mathrm{mol}$ ，gauche interaction $3.54-2.69$ or $0.85 \mathrm{kcal} / \mathrm{mol}$ ．（It should be taken into account that these particular force－field calculations refer to the gas phase and that the gas－phase energy differences tend to be somewhat greater than the liquid－phase ones because the less stable conformers or isomers generally have the higher heat of vaporization．${ }^{24}$ ）Also，the 0.74 $\mathrm{kcal} / \mathrm{mol}$ value is lower than the Me / H axial interaction in cy－ clohexane（ $0.87 \mathrm{kcal} / \mathrm{mol}$ ，vide supra）and higher than the liq－ uid－phase gauche interaction in the gauche form of butane， $0.5-0.7$ $\mathrm{kcal} / \mathrm{mol} ;{ }^{25}$ this presumably reflects the ease of energy mini－ mization by torsional deformation；greatest in butane，least in axial methylcyclohexane，intermediate in diequatorial 1，2－dimethyl－ cyclohexane．

Details of NMR spectral assignments are given in the sup－ plemental material．${ }^{12}$

Experimental Section

Proton NMR spectra were recorded on a Varian XL－100（ 100 MHz ）， Bruker spectrospin WM－250（ 250 MHz ），or Nicolet NT－360（ 360 MHz ， located at the NIEHS，Research Triangle Park）instrument operated in pulsed Fourier transform mode and locked on solvent deuterium．Car－ bon－13 NMR spectra were similarly recorded on a Varian XL－100（25．12 $\mathrm{MHz})$ or Bruker Spectrospin WM－250（ 62.89 MHz ）instrument．Sam－ ples were prepared as $10-25 \%$ solutions with the solvents shown in the tables（in the case of carbon spectra）or mentioned below（in the case of proton spectra）．All spectra at temperatures other than ambient were recorded in the Bruker instrument；temperature measurements are ± 3 K ．For area measurements portions of spectra were expanded and re－ corded at a sweep width of 200 Hz ．The individual peaks were elec－ tronically integrated and the ratio of the peaks of the integral tracings taken as peak area ratios．

Boiling points were generally determined either in a short－path column or Kugelrohr apparatus（air－bath temperature）and are uncorrected． Micro analyses were performed by M．H．W．Laboratories．Preparative GLPC was performed in a Varian Aerograph Model 2700 instrument equipped with either a $15 \mathrm{ft} \times 0.375 \mathrm{in}$ ．Apiezon－L（10\％）on $30 / 60$ Chromosorb－W or a $12 \mathrm{ft} \times 0.375 \mathrm{in} .20 \%$ DEGS on $80 / 100$ Chromosorb P column．Mass spectra were recorded on a VG－micromass 7070F in－ strument．

3－Phenyl－3，5，5－trimethylcyclohexanone（3）：3－Phenyl－3，5，5－tri－ methylcyclohexanone was prepared from isophorone by a modification of a procedure described．${ }^{3.12}$
${ }^{13} \mathrm{C}$ NMR spectrum，Table I．
1－Phenyl－1，3，3－trimethylcyclohexane（4）：3－Phenyl－3，5，5－trimethyl－ cyclohexanone（ 3 ）（ $4.32 \mathrm{~g}, 0.02$ mol，crude product）and $\mathrm{KOH}(5 \mathrm{~g})$ were refluxed with 3.5 g of hydrazine hydrate $(98 \%$ ，ca． 0.07 mol$)$ in 50 mL

[^4]of triethylene glycol for 2 h ．The same amounts again of hydrazine hydrate and KOH were added，and the flask was fitted with a descending condenser and heated in an oil bath at $200^{\circ} \mathrm{C}$ for 8 h ．After cooling， the reaction mixture was diluted with water $(100 \mathrm{~mL})$ and the product extracted with ether（ $3 \times 50 \mathrm{~mL}$ ）．The etheral extracts were combined with the distillate collected during the reaction，washed successively with 2 N HCl ，saturated aqueous NaHCO_{3} ，and finally with saturated NaCl solution（each about 100 mL ），and dried over anhydrous MgSO_{4} ．Dis－ tillation of the ether followed by Kugelrohr distillation $\left(160-170^{\circ} \mathrm{C}(30\right.$ mm ））yielded $2.7 \mathrm{~g}(67 \%)$ of 4 ，which was purified by GLPC（Apiezon－L column）at $160^{\circ} \mathrm{C}$ ．
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 0.39\left(\mathrm{~s}, 3 \mathrm{H}, 3-\mathrm{CH}_{3}\right.$ ，cis to Ph$), 0.92$ $\left(\mathrm{s}, 3 \mathrm{H}, 3-\mathrm{CH}_{3}\right.$ ，trans to pH$), 1.15\left(\mathrm{~s}, 3 \mathrm{H}, 1-\mathrm{CH}_{3}\right), 2.2-3.4(\mathrm{~m}, 8 \mathrm{H})$ ， $7.15-7.4(\mathrm{~m}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR spectrum，Table I；Anal．Calcd for $\mathrm{C}_{15} \mathrm{H}_{22}$ ： C， $89.04 ;$ ，H， 10.96 ．Found：C，89．27；H，10．59．

1－Phenyl－3，3－trans－5－trimethylcyclohexane（1）was prepared according to Scheme V．

1－Phenyl－3，3－t，5－trimethylcyclohexan－r－1－ol（11）．3，3，5－Trimethyl－ cyclohexanone（Fluka AG， $98 \%, 14 \mathrm{~g}, 0.1 \mathrm{~mol}$ ）in 50 mL of absolute ether was added to 2 equiv of phenylmagnesium bromide prepared from 4.8 g of magnesium turnings and 28.4 g of bromobenzene in 200 mL of absolute ether．The resulting mixture was refluxed for 1 h and stirred overnight．Saturated ammonium chloride（ 100 mL ）was carefully added dropwise，with external cooling．The ether layer was separated and the aqueous layer extracted with ether $(3 \times 50 \mathrm{~mL})$ ．The combined etheral solution was washed with saturated sodium chloride solution $(100 \mathrm{~mL})$ ． Drying over anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ ，evaporation of ether，and distillation in a short－path column（ $\mathrm{bp} 85-89^{\circ} \mathrm{C}(0.05 \mathrm{~mm}$ ））yielded $17.5 \mathrm{~g}(81 \%)$ of 11．From ${ }^{13} \mathrm{C}$ NMR spectral analysis（Table IV）it was found to be mainly phenyl－3，3－t－5－trimethylcyclohexan－r－l－ol（ $>95 \%$ ）obtained by the favored equatorial approach of the Grignard reagent to $3,3,5$－tri－ methylcyclohexanone．
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 360 \mathrm{MHz}\right) \delta 0.91\left(\mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{e}-\mathrm{CH}_{3}\right) ; 0.91-0.93$（d， $\left.J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, 5-\mathrm{CH}_{3}\right), 1.19\left(\mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{a}-\mathrm{CH}_{3}\right), 0.85-1.05(\mathrm{~m}, 1 \mathrm{H})$ ， 1．35－1．6（m，5 H），1．7－1．8（bd，1 H），2．0－2．2（symmetrical， 15 lines， 1 $\mathrm{H}, \mathrm{H}-5$ ）， $7.16-7.24$（tt，$J_{\text {orho }}=7.2, J_{\text {mela }}=1.3 \mathrm{~Hz}, 1 \mathrm{H}$ ，phenylpara）， $7.28-7.34$ and $7.45-7.49\left(\mathrm{~m}, 4 \mathrm{H}\right.$ ，ortho and meta hydrogens）；${ }^{13} \mathrm{C}$ NMR spectrum，Table IV；MS，$m / e 218,161,147$ ，105；elemental composition calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O} \mathrm{M}^{+} 218.33$ ，found 218.17 ．

1－Phenyl－3，3，5－trimethylcyclohexene（12）and 1－Phenyl－3，5，5－tri－ methylcyclohexene（13）．To $11(5.0 \mathrm{~g}, 0.023 \mathrm{~mol})$ in a round－botton flask was added 15 mL of $20 \%(\mathrm{v} / \mathrm{v}) \mathrm{H}_{2} \mathrm{SO}_{4}$ in glacial acetic acid．${ }^{26}$ The alcohol dissolved instantly in the acid mixture on stirring and the olefin layer separated；stirring was continued for 10 min ．The mixture was poured into 100 mL of ice－cold water and extracted with ether $(3 \times 25$ mL ）．The combined etheral extract was washed successively with water， saturated aqueous NaHCO_{3} solution，and saturated NaCl solution（ 50 mL each）．The ether solution was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ ，filtered， concentrated，and distilled（Kugelrohr， $175-185^{\circ} \mathrm{C}(30 \mathrm{~mm})$ ）to yield $3.90 \mathrm{~g}(0.019 \mathrm{~mol}, 87 \%)$ of isomeric olefins 12 and $13 \mathrm{in} \mathrm{ca} 2:$.1 ratio． While the ${ }^{13} \mathrm{C}$ NMR shifts of 12 and 13 （Table V）were assigned from the spectrum of the mixture，a small quantity was separated in GLPC using Apiezon－L column at $170^{\circ} \mathrm{C}$ for ${ }^{1} \mathrm{H}$ NMR spectroscopy； 12 emerged first followed by 13.

12：${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right) \delta 1.05-1.07(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$ ， $\left.5-\mathrm{CH}_{3}\right), 1.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.1-1.2(\mathrm{~m}, 1 \mathrm{H})$ ，

[^5]1.5-1.6(m, 1 H), 1.8-2.0(m, 2 H), 2.35-2.5 (doublet or quartet, 1 H , one of the allylic hydrogens), 5.82 (broad singlet, 1 H , olefinic), 7.2-7.4 (m, $5 \mathrm{H}, \mathrm{Ph}$).

13: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right) \delta 0.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.08(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), 1.08-1.1 (d, $\left.J=7 \mathrm{~Hz}, 3 \mathrm{H}, 3-\mathrm{CH}_{3}\right), 1.45-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{~s}$, 1 H , probably one of the hydrogens at 4-position having $J_{\mathrm{gem}}=J_{\mathrm{vic}} \approx 0$), 2.03-2.45 (m, 3 H), 5.91 (br s, 1 H , olefinic), $7.2-7.4(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}$).

1-Phenyl-3,3,trans-5-trimethylcyclohexane (1) and Its Epimer 2: The olefinic mixture of 12 and $13(1.0 \mathrm{~g}, 0.005 \mathrm{~mol})$ was dissolved in 20 mL of 95% ethanol in a hydrogenation bottle, and 100 mg of $10 \% \mathrm{Pt}$ on carbon was added. The mixture was shaken in a Parr Hydrogenator for 30 min with a starting pressure of 50 psi . It was then filtered through a Celite pad that was washed with 10 mL of ethanol. The solvent was rotoevaporated and the residue distilled in a Kugelrohr ($150-160^{\circ} \mathrm{C} /(30$ $\mathrm{mm})$) to yield $0.82 \mathrm{~g}(81.8 \%)$ of $\mathbf{1}$ and 2 in a ratio of ca. $3: 1$ as shown by ${ }^{13} \mathrm{C}$ NMR and GC. This mixture was separated by preparative GLPC using the 20% DEGS column at $160^{\circ} \mathrm{C}$. Compound $2(25 \%)$ emerged first followed by 1 (75\%). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{22}: \mathrm{C}, 89.04 ; \mathrm{H}, 10.96$. Found: C, 89.18; H, 10.82 .

1: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 360 \mathrm{MHz}\right) \delta 0.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.07(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.13-1.15\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, 5-\mathrm{CH}_{3}\right), 1.22-1.28(\mathrm{~m}, 1 \mathrm{H})$, 1.43-1.48 (q, 1 H), 1.53-1.61 (m, 3 H), 1.81-1.89 (m, 1 H), 2.1-2.13 (m, 1 H), 2.98-3.02 (7 lines, 1 H , benzylic), $7.21-7.42(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR, Table I.

2: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right) 0.90-0.93(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.5-\mathrm{CH}_{3}\right), 0.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.15-1.93$ (series of multiplets, 7 H), 2.66-2.82 (tt, A part of $\mathrm{AM}_{2} \mathrm{X}_{2}$ spectrum, $J_{\mathrm{az}}=12, J_{\text {ae }}$ $=4.6 \mathrm{~Hz}, 1 \mathrm{H}$, benzylic), $7.14-7.35(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR, Table I .

1-Phenyl-t-3,c-4-dimethylcyclohexan-r-1-ol (7) and 1-Phenyl-c-3,t-4-dimethylcyclohexan-r-1-ol (8). A solution of $5 \mathrm{~g}(0.04 \mathrm{~mol})$ of trans-3,4-dimethylcyclohexanone (Wiley Organics, 85% purity, the rest being the cis isomer as shown by ${ }^{13} \mathrm{C}$ NMR spectrum) in 20 mL of absolute ether was added to a solution of phenylmagnesium bromide prepared from magnesium turnings ($1.92 \mathrm{~g}, 0.08 \mathrm{~mol}$) and bromobenzene $(12.56 \mathrm{~g}, 0.08 \mathrm{~mol})$ in 100 mL of absolute ether. The resulting mixture was refluxed for 1 h and stirred overnight. Saturated ammonium chloride solution (50 mL) was carefully added dropwise, with external cooling. The ether layer was separated and the aqueous layer extracted with ether ($3 \times 20 \mathrm{~mL}$). The combined etheral solution was washed with saturated sodium chloride solution (50 mL) and dried over anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$. Evaporation of ether yielded a yellow oil which was shown by ${ }^{13} \mathrm{C}$ NMR to be a mixture of ca. 70% of 7 and ca. 30% of 8 . The epimeric alcohol mixture was directly used in the next step without further purification.
${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right) \delta 0.86-1.00$ (overlapping four sets of doublets, $2 \times 2 \times 3 \mathrm{H} ; \mathrm{CH}_{3}$ groups), $1.4-1.82(\mathrm{~m}, 2 \times 6 \mathrm{H}$), 2.1-2.3 (br $\mathrm{s}, 2 \times 1 \mathrm{H},-\mathrm{OH}), 2.3-2.6(\mathrm{~m}, 2 \times 2 \mathrm{H}), 7.2-7.6(\mathrm{~m}, 2 \times 5 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR, Table IV.

1-Phenyl-trans-3,4-dimethylcyclohexene (9) and 1-Phenyl-trans-4,5dimethylcyclohexene (10). The epimeric alcohol mixture obtained in the previous step (3 g) was mixed with 3 g of powdered $\mathrm{KHSO}_{4}{ }^{7}$ in a $100-\mathrm{mL}$ round-bottomed flask equipped with a Kugelrohr receiver bulb and placed in the Kugelrohr apparatus. The flask was heated at $150^{\circ} \mathrm{C}$ for ca. 1 h, which brings about the dehydration of the alcohol mixture, and the water droplets were collected in the receiver. Then the receiver was changed carefully and aspirator vacuum applied to distill the olefinic mixture ($170-180^{\circ} \mathrm{C}(35 \mathrm{~mm})$). The mixture thus collected was redistilled to yield 2.4 g (88%) of the desired products. ${ }^{13} \mathrm{C}$ NMR analysis revealed the composition of the mixture to be 45% of 9 and 55% of 10 . For spectral assignment, the mixture was separated by preparative GLPC employing Apiezon-L column at $170^{\circ} \mathrm{C}$. 9 emerged first followed by 10.

9: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right) \delta 1.02-1.04$ and $1.08-1.1$ (two doublets, $J=6.6 \mathrm{~Hz}, 2 \times 3 \mathrm{H}, \mathrm{CH}_{3}$), $1.23-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.82-2.00(\mathrm{~m}$, 2 H), 2.41-2.48 (m, 2 H , two of the allylic hydrogens), 5.90-5.93 (unresolved quartet, 1 H , olefinic), $7.21-7.44(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR, Table V.

10: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right) \delta 0.98-1.00$ and $1.02-1.04$ (two doublets, $J=6.5 \mathrm{~Hz}, 2 \times 3 \mathrm{H}, \mathrm{CH}_{3}$), $1.36-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.82-2.54$ (four sets of multiplets, 4 H), 6.03-6.09 (m, 1 H, olefinic), 7.2-7.4 (m, $5 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR, Table V.
r-1-Phenyl-t-3,c-4-dimethylcyclohexane (5) and r-1-Phenyl-c-3,t-4dimethylcyciohexane (6). The mixture of olefins from the previous step, 9 and $10(1.86 \mathrm{~g}, 0.01 \mathrm{~mol})$, was dissolved in 50 mL of absolute ethanol in a Parr hydrogenation bottle. It was flushed with nitrogen and 200 mg of $10 \% \mathrm{Pt}$ on carbon catalyst added. The mixture was shaken in a Parr Hydrogenator for ca. 1 h at a starting pressure of 45 psi . It was then carefully filtered through a Celite pad. The solution was rotoevaporated and the residual liquid distilled in a Kugelrohr to yield 5 and 6 as a $55: 45$ mixture (${ }^{13} \mathrm{C}$ NMR analysis). The mixture boiled in the range $175-185$
${ }^{\circ} \mathrm{C}$ (50 mm) (Kugelrohr). Attempts to separate the mixture employing a variety of GLPC columns were futile. However, the mixture was purified (from the other diastereomers possible from the cis-3,4-dimethylcyclohexanone precursor, which was present to 15%) by preparative GLPC using the Apiezon-L column at $160^{\circ} \mathrm{C}$ before the NMR measurements. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20}: \mathrm{C}, 89.29 ; \mathrm{H}, 10.71$. Found: C, 89.49; H, 10.69 .
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 360 \mathrm{MHz}\right)$ (5 and 6 as a $55: 45$ mixture) δ $0.92-0.94\left(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.93-0.95(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 0.97-0.99\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.01-1.03(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), a series of multiplets in the regions $1.1-1.51$ and $1.64-2.01$; 2.5-2.6 (tt, A part of $\mathrm{AM}_{2} \mathrm{X}_{2}, J_{\mathrm{ae}}=3.3, J_{\mathrm{aa}}=12 \mathrm{~Hz}, 1 \mathrm{H}$, benzylic in 6), 2.85-2.95 (7 lines, 1 H , benzylic in 5), 7.12-7.3 (m, $2 \times 5 \mathrm{H}, \mathrm{Ph}$); ${ }^{13} \mathrm{C}$ NMR. ${ }^{17}$

Compounds Prepared for Comparison of ${ }^{13}$ C NMR Spectra. In Table IV are recorded the ${ }^{13} \mathrm{C}$ NMR spectra of 1-phenylcyclohexanol $(\mathbf{1 4})^{27,28}$ and its 4 -tert-butyl homologues, 15 and $16,{ }^{28}$ and the diastereomeric $1, c-3, t-4$ - and $1, c-3, t-4$-trimethylcyclohexan-r-1-ols (17 and 18). The

17

21

23

24
latter were obtained as a solid mixture ($17: 18$ ratio $2: 1$) by addition of methylmagnesium iodide to trans-3,4-dimethylcyclohexanone, as reported above for the analogous phenyl compounds. In Table V are recorded the ${ }^{13} \mathrm{C}$ NMR spectra of olefins 23 and 24 obtained from the $\mathbf{1 7 - 1 8}$ mixture by KHSO_{4} dehydration (bp $145-150^{\circ} \mathrm{C}(760 \mathrm{~mm})$, Kugelrohr) in the ratio of ca. $45: 55$. The spectra of 21 and 22 are from the literature. ${ }^{30}$ Compounds $19^{28.29}$ and $\mathbf{2 0}{ }^{7}$ have been reported previously but the spectrum of $\mathbf{2 0}$ represents a correction in assignment of the olefinic, ipso, and para carbon atoms.

Acknowledgment. This work was supported by NSF Grant CHE80-20388. The high-field NMR spectra were recorded by Dr. David L. Harris.

Registry No. 1, 87954-30-1; 2, 87954-31-2; 3, 25109-54-0; 4, $33787-$ 24-5; 5, 86021-34-3; 6, 86021-33-2; 7, 87954-32-3; 8, 87954-33-4; 9, 87954-34-5; 10, 87954-35-6; 11, 60178-86-1; 12, 87954-36-7; 13, 87954-37-8; 14, 1589-60-2; 15, 17807-26-0; 16, 21024-55-5; 17, 52137-$11-8 ; \mathbf{1 8}, 52137-15-2 ; \mathbf{2 0}, 16776 \cdot 31-1 ; 23,87954-38-9 ; 24,87954-39-0 ;$ 3,3,5-trimethylcyclohexanone, 873-94-9; phenyl bromide, 108-86-1; trans-3,4-dimethylcyclohexanone, 28023-45-2; trans-1,2-dimethylcyclohexane, 6876-23-9; isophorone, 78-59-1.
Supplementary Material Available: Recalculation of the equilibrium shown in Scheme I using experimental data, calculation of the methyl/methyl gauche interaction in trans-1,2-dimethylcyclohexane from the literature, NMR spectral assignments, modified procedure for preparing 3 -phenyl-3,5,5-trimethylcyclohexanone (3), and proton NMR data for 3 (11 pages). Ordering information is given on any current masthead page.
(28) Juaristi, E. Ph.D. Dissertation, University of North Carolina, Chapel Hill, NC, 1977. See also: Jeyaraman, R.; Jawaharsingh, C. B.; Avila, S.; Ganapathy, K.; Eliel, E. L.; Manoharan, M.; Morris-Natschke, S. J. Heter. ocycl. Chem. 1982, 19, 449.
(29) Stothers, J. B. "Carbon-13 NMR Spectroscopy"; Academic Press: New York, 1972; pp 78 and 84
(30) Bremser, W.; Ernst, L.; Franke, B. "Carbon-13 NMR Spectral Data"; Verlag-Chemie: Weinheim, New York, 1979.

[^0]: ${ }^{\dagger}$ Dedicated to Professor Günther O. Schenck in honor of his 70th birthday.

[^1]: (11) Cf.: Stolow, R. D. J. Am. Chem. Soc. 1959, 81, 5806. Tichỳ, M.; Jonas, J.; Sicher, J. Collect. Czech. Chem. Commun. 1959, 24, 3434 .
 (12) See statement regarding supplemental material at end of paper.

[^2]: (13) Regarding this point, see: St.-Jacques, M.; Bernard, M.; Vaziri, C. Can. J. Chem. 1970, 48, 2386. Toure, S.; Lapasset, J.; Boyer, B.; Lamaty, G. Acta Crystallogr., Sect. B 1979, B35, 2790 . Toure, S.; Lapasset, J.; Boyer, B.; Lamaty, G. Ibid. 1980, B36, 2168 . Anet, F. A. L.; Basus, V. J.; Hewett, A. P. W.; Saunders, M. J. Am. Chem. Soc. 1980, 102, 3945.
 (14) This assumption comes from the comparison of Geneste's values, which were obtained at room temperature, with ours obtained at $-100^{\circ} \mathrm{C}$. See also the discussion of the NMR data. ${ }^{12}$
 (15) Manoharan, M.; Eliel, E. L.; Carroll, F. l. Tetrahedron Lett. 1983, 24, 1855.
 (16) Since this topic has already been communicated in preliminary form, ${ }^{17}$ elaboration of the arguments from the literature is relegated to the supplement material, ${ }^{12}$ and the previously reported ${ }^{17}$ NMR data are not repeated here.
 (17) Manoharan, M.; Eliel, E. L. Tetrahedron Lett. 1983, 24, 453.
 (18) Eliel, E. L.; Allinger, N. L.; Angyal, S. J.; Morrison, G. A. "Conformational Analysis", Reprinted by the American Chemical Society, Washington, DC, 1981, pp 52-56.
 (19) (a) Prosen, E. J.; Johnson, W. H.; Rossini, F. D. J. Res. Natl. Bur. Stand. 1947, 39, 173. (b) Kilpatrick, J. E.; Werner, H. G.; Beckett, C. W.; Pitzer, K. S.; Rossini, F. D. J. Res. Natl. Bur. Stand. 1947, 39, 523.
 (20) Tichŷ, M.; Vasickova, S.; Arakelian, S. V.; Sicher, J. Collect. Czech. Chem. Commun. 1970, 35, 1522. Tichȳ, M. Collect. Czech. Chem. Commun. 1973, 38, 3631.
 (21) These values, being small differences between large numbers, must be considered only approximate.

[^3]: (22) Note Added in Proof: Since publication of our preliminary communication, ${ }^{17}$ Booth and Grindley (Booth, H.; Grindley, T. B. J. Chem. Soc., Chem. Commun. 1983, 1013) have reported a direct determination of the trans-1,2-dimethylcyclohexane conformational equilibrium (Scheme V1I, R $=\mathrm{H}$) by using both ${ }^{13} \mathrm{C}$ enriched substrate and a line-broadening technique. The former approach gave $\Delta G^{\circ}=2.75 \mathrm{kcal} / \mathrm{mol}$, the latter 2.58 ± 0.05 $\mathrm{kcal} / \mathrm{mol}$. The corresponding values of the $\mathrm{Me} / \mathrm{Me}$ gauche interaction Z are 0.73 and $0.90 \mathrm{kcal} / \mathrm{mol}$, the former in excellent agreement with the value determined here, the latter (considered by the authors as more accurate) somewhat less so.
 (23) Allinger, N. L.; Hirsch, J. A.; Miller, M. A.; Tyminski, I. J.; VanCatledge, F. A. J. Am. Chem. Soc. 1968, 90, 1199.

[^4]: （24）Reference $18, \mathrm{p} 54$.
 （25）（a）Rosenthal，L．；Rabolt，J．F．；Hummel，J．J．Chem．Phys．1982， 76， 817 and references therein．（b）Woller，P．B．；Garbisch，E．W．，Jr．J．Am． Chem．Soc．1972，94，5310．See also：Allinger，N．L．；Profeta，S．，Jr．J． Comput．Chem．1980，1， 181.

[^5]: （26）Cf．：Garbisch，E．W．，Jr．J．Org．Chem．1961，26， 4165.
 （27）Fieser，L．F．；Szmuszkovicz，J．J．Am．Chem．Soc．1948，70， 3352.

